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Introduction

SNPsea is an algorithm to identify cell types and pathways likely to be
affected by risk loci. It requires a list of SNP identifiers and a
matrix of genes and conditions.

Genome-wide association studies (GWAS) have discovered multiple genomic
loci associated with risk for different types of disease. SNPsea
provides a simple way to determine the types of cells influenced by
genes in these risk loci.

Suppose disease-associated alleles influence a small number of
pathogenic cell types. We hypothesize that genes with critical functions
in those cell types are likely to be within risk loci for that disease.
We assume that a gene’s specificity to a cell type is a reasonable
indicator of its importance to the unique function of that cell type.

First, we identify the genes in linkage disequilibrium (LD) with the
given trait-associated SNPs and score the gene set for specificity to
each cell type. Next, we define a null distribution of scores for each
cell type by sampling random SNP sets matched on the number of linked
genes. Finally, we evaluate the significance of the original gene set’s
specificity by comparison to the null distributions: we calculate an
exact permutation p-value.

SNPsea is a general algorithm. You may provide your own:


	Continuous gene matrix with gene expression profiles (or other
values).

	Binary gene annotation matrix with presence/absence 1/0 values.



We provide you with three expression matrices and one annotation matrix.
See Data [http://snpsea.readthedocs.org/en/latest/data.html].

The columns of the matrix may be tissues, cell types, GO annotation
codes, or other conditions.


Note

Continuous matrices must be normalized before running SNPsea. That is,
columns must be directly comparable to each other. For example, you might
consider quantile normalization [http://www.ncbi.nlm.nih.gov/pubmed/12538238].



If you benefit from this method, please cite:


Slowikowski, K. et al. SNPsea: an algorithm to identify cell types,
tissues, and pathways affected by risk loci. [http://www.ncbi.nlm.nih.gov/pubmed/24813542] Bioinformatics (2014).


See the first description of the algorithm and additional examples here:


Hu, X. et al. Integrating autoimmune risk loci with gene-expression
data identifies specific pathogenic immune cell subsets. [http://www.ncbi.nlm.nih.gov/pubmed/21963258] The American Journal of
Human Genetics 89, 496–506 (2011).
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Visual Summary


Cartoon


[image: ]


This cartoon illustrates the key ideas of the algorithm:

A| Step 1. Each SNP in a set of disease-associated SNPs is in
linkage disequilibrium (LD) with multiple genes. The genes are scored,
in aggregate, for specificity to each tissue.

B| Step 2: The algorithm is repeated with random null SNP sets that
are not associated with any phenotype. These have been selected from an
LD-pruned list of SNPs, so the whole genome is covered.

C| Step 3: The random SNP set scores form the null distributions
which allows us to determine statistical significance for enrichment of
specificity to a particular tissue/cell-type/condition.




Flow Chart


[image: ]


This flow chart shows the input data required to perform the analysis,
and a summary of the intermediate steps.
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Algorithm Details

SNPsea tests if genes implicated by risk loci (e.g., those discovered
through genome-wide association (GWA) studies) are specifically
expressed in some conditions over others, and if this specificity is
statistically significant. The program requires two inputs:


	A list of SNP identifiers: rs123, 12:456, ...

	A matrix of genes and conditions, such as:
	Gene expression profiles of multiple different cell types.

	Ontology terms and presence/absence 1/0 values for each gene in
each term.







For example, SNPsea can be used to find tissues or cell types whose
function is likely to be influenced by genes in risk loci. If the genes
in risk loci are used in relatively few cell types, we hypothesize that
they are likely to affect those cell types’ unique functions. This
assumes that expression specificity is a good indicator of a gene’s
importance to the unique function of the cell type.

For a given set of SNPs associated to some phenotype, SNPsea tests
whether all implicated genes, in aggregate, are enriched for specificity
to a condition in a user-provided matrix of genes and
conditions/annotations. The algorithm consists of three steps:


	Step 1: Assigning genes to each SNP
	We use linkage disequilibrium (LD) to identify the genes
implicated by each SNP.





	Step 2: Calculating specificity scores
	We look up implicated genes in a user-provided matrix and
calculate a specificity score for each annotation/condition based
on the values of these genes.





	Step 3: Testing significance
	We compare the specificity scores to a null distribution of scores
obtained with random sets of matched SNP sets and compute an
empirical \(P\)-value.








Step 1: Assigning genes to each SNP

Accurate analyses must address the critical issue that SNPs frequently
implicate a region with multiple different genes ( Supplementary Figure
2 ). The challenge is to find evidence to show which of those genes
are associated with a given trait.

We determine the genes plausibly implicated by each trait-associated SNP using
a previously described strategy ( Supplementary Figure 1 and
Rossin et al. 2011). First, we define the linkage interval for a given SNP
as the span between the furthest correlated SNPs \(r^{2}>0.5\) (EUR)
within a 1 Mb window (1000 Genomes Consortium 2012). Next, we extend the
interval to the nearest recombination hotspots with recombination rate >3
cM/Mb (Myers et al. 2005). To address the case when no genes overlap an
interval, we provide an option for SNPsea to extend the interval up- and
downstream (by default 10 Kb).

Most frequently, we find multiple genes \((m_{k}>1)\) in a single
SNP locus \(k\). We expect many loci with multiple genes because of
regions with high LD across long stretches of a chromosome. Less
frequently, a locus has a single gene \((m_{k}=1)\), and loci with
no genes \((m_{k}=0)\) are discarded.

After each SNP has been assigned an interval and a set of genes
overlapping the interval, we merge SNPs with shared genes into a single
locus to avoid multiple-counting of genes.


Two score options

By default, SNPsea assumes one gene in each associated locus is
associated with the given trait. We also include the option to assume
all genes within a locus are associated. We compare results of the two
options with four phenotypes ( Supplementary Figure 4 ).


	The ’--score single’ method (default option) assumes that a
single gene in each locus is associated with the given phenotype. For
each condition, we choose the gene in each locus with the greatest
specificity to that condition.

	The ’--score total’ method assumes that all genes in a SNP’s
linkage interval are associated. We account for all linked genes when
calculating scores.








Step 2: Calculating specificity scores

SNPsea uses different algorithms for matrices with continuous or binary
values. Before running SNPsea, a matrix with continuous values must be
normalized so that columns are directly comparable. It is not
appropriate to use this method on a “raw” matrix of expression values.


Specificity for a matrix of continuous values

We extend an approach we have previoulsy described in detail (Hu et
al. 2011). Let \(A\) denote a continuous gene expression matrix
with \(m\) genes and \(n\) conditions. First, we normalize the
expression of each gene by dividing each value by the L2 norm of the
genes values in different conditions.


\[A'_{i,j}=\dfrac{A_{i,j}}{\sqrt{A_{i,1}^{2}+A_{i,2}^{2}+\cdots+A_{i,n}^{2}}}\]

The resulting matrix \(A'\) has values \(A'_{i,j}\) between 0
and 1 indicating specificity of gene \(i\) to condition \(j\). A
value \(A'_{i,j}=1\) indicates that gene \(i\) is exclusively
expressed in condition \(j\), and \(A'_{i,j}=0\) indicates that
gene \(i\) is not expressed in condition \(j\).

Next, we transform \(A'\) to a matrix \(A''\) of non-parametric
condition-specificity percentiles as follows. For each condition
\(j\), we rank the values of \(A'_{,j}\) in descending order and
divide them by the number of genes \(m\), resulting in percentiles
between 0 and 1 where a lower value indicates greater specificity to the
given condition.


\[A''_{i,j}=\dfrac{\text{Rank}_{j}(A'_{i,j})}{m}\]




Locus scores for a matrix of continuous values

We create a new matrix \(P\), where each value \(P_{k,j}\) is a
score for a SNP locus \(k\) and a condition \(j\). The locus
scores \(P_{,j}\) for a single condition \(j\) are approximately
uniformly distributed for a set of randomly selected loci under the
following assumption: for the set of genes in a given SNP locus
\(I_{k}\), the values \(A''_{i\in I_{k},j}\) are random,
independent, and approximately uniformly distributed. We’ll come back to
this assumption later when testing significance in Step 3 below.




’--score single’ (default)

This approach assumes one gene in each SNP locus is associated with the
trait.

For each locus-condition pair \((k,j)\), we choose the single gene
\(i\) in locus \(k\) with greatest specificity to condition
\(j\) among the \(m_{k}\) genes in the locus, as previously
described in Hu et al. (Hu et al. 2011). Let \(g_{k}\) denote
this most specific gene, so that
\(A''_{g_{k},j}=\text{Min}_{i\in I_{k}}(A''_{i,j})\) where
\(I_{k}\) denotes the set of genes in locus \(k\). If we assume
values of \(A''_{i\in I_{k},j}\) are uniformly distributed for a
given condition \(j\) and genes \(i\in I_{k}\), then the
probability of obtaining a value equal to or less than
\(A''_{g_{k},j}\) is as follows:


\[P_{k,j}=1-(1-\text{Min}_{i\in I_{k}}(A''_{i,j}))^{m_{k}}\]




’--score total’

This assumes all genes in a given SNP locus are associated with a trait — we
consider this model to be unlikely in most situations. We compute the
probability of observing values \(A''_{i\in I_{k}}\) for some locus
\(k\) as the product of percentiles. This assumes \(A''_{i\in I_{k}}\)
values are uniformly distributed.


\[\begin{split}\begin{aligned}
P_{k,j} & = & \int_{x}^{\infty}\Gamma(m_{k},1)\ \ \text{for}\ \ x=\sum_{i\in I_{k}}-\text{ln}A''_{i,j}\end{aligned}\end{split}\]




Locus scores for a matrix of binary values

Let \(B\) denote a binary matrix (1=present, 0=absent) with
\(m\) genes and \(n\) conditions. Let \(m_{j}\) denote the
number of genes present in condition \(j\). Let \(m_{k}\) denote
the number of genes in locus \(k\) and \(m_{k,j}\le m_{k}\)
denote the number of genes in locus \(k\) that are present in
condition \(j\).

We provide two options to calculate locus scores. By default, we account
for presence or absence of any of the \(m_{k}\) genes in condition
\(j\), as shown below (’--score single’). Alternatively, we
account for the number of genes in a given locus (’--score total’).







	`’–score single’
	’--score total’




	\(P_{k,j}=\begin{cases} 1-p(0) & m_{k,j}>0\\ 1 & m_{k,j}=0 \end{cases}\)
	\(P_{k,j}=\begin{cases} 1-\sum_{x=0}^{m_{k,j}-1}p(x) & m_{k,j}>0\\ 1 & m_{k,j}=0 \end{cases}\)





where


\[p(x)=\dfrac{{m_{j} \choose x}{m-m_{j} \choose m_{k}-x}}{{m \choose m_{k}}}\]




Condition specificity scores

For both continuous and binary matrices, we define a specificity score
\(S_{j}\) for each condition \(j\) as the aggregate of
\(P_{k,j}\) values across SNP loci:


\[S_{j}=\sum_{k}-\text{log}P_{k,j}\]






Step 3: Testing significance


Analytical p-values

We previously found that aggregating the \(P_{k,j}\) scores and
determining a \(P\)-value analytically from a distribution results
in inaccurate p-values (Hu et al. 2011). \(A''_{i,j}\) values may
be relatively uniform genome-wide, but proximate genes often have shared
functions. The genome has a complex correlation structure of linkage
disequilibrium, gene density, gene size and function that is challenging
to model analytically. We use the sampling strategy described below
instead.




Permutation p-values

For each condition, we use a sampling approach to calculate an empirical
p-value. This is the tail probability of observing a
condition-specificity score greater or equal to \(S_{j}\). We obtain
the distribution empirically with null SNP sets.

We compute specificity scores \(S\) for random SNP sets. Each SNP in
a null set is matched to a SNP in the user’s set on the number of linked
genes. To adequately sample genes from the entire genome, we sample SNP
sets from a list of LD-pruned SNPs (subset of SNPs in 1000 Genomes
Project) (Lango Allen et al. 2010).

For each condition \(j\), we calculate an exact permutation p-value
(Phipson et al. 2010). Let \(a_{j}\) denote the number of sampled
SNP sets (e.g. 10,000) and let \(b_{j}\) denote how many null
specificity scores are greater than or equal to the user’s score
\(S_{j}\):


\[p_{j}=\dfrac{b_{j}+1}{a_{j}+1}\]

We implemented adaptive sampling to calculate p-values efficiently. As
each condition is tested for significance, we increase the number of
iterations to resolve significant p-values and save computation by using
fewer iterations for less significant p-values. Two options allow the
user to control the adaptive sampling:


	’--max-iterations N’ The maximum number of iterations for each
condition. We stop testing a condition after sampling \(N\) SNP
sets.

	’--min-observations N’ The minimum number of observed null
specificity scores greater than or equal to \(S_{j}\) required to
stop sampling SNP sets for a condition \(j\).








Example

Suppose we have a gene expression matrix \(A\):

> A1 = read.table(text = "
2.55 0.05 3.28 1.11
2.63 4.53 4.66 3.89
0.61 3.31 2.49 4.59
0.82 1.27 4.47 2.31
4.91 1.23 0.51 0.95")
> A1
    V1   V2   V3   V4
1 2.55 0.05 3.28 1.11
2 2.63 4.53 4.66 3.89
3 0.61 3.31 2.49 4.59
4 0.82 1.27 4.47 2.31
5 4.91 1.23 0.51 0.95





Compute the specificity (L2 norm) of each gene (row) to each condition
(column):

> A2 = t(apply(A1, 1, function(row) row / sqrt( sum(row ^ 2) )))
> A2
             V1         V2         V3        V4
[1,] 0.59293508 0.01162618 0.76267727 0.2581012
[2,] 0.32801918 0.56499121 0.58120508 0.4851690
[3,] 0.09818755 0.53278820 0.40079837 0.7388211
[4,] 0.15607783 0.24173030 0.85081451 0.4396827
[5,] 0.94873958 0.23766796 0.09854525 0.1835647





Rank the genes in each condition and convert to percentiles:

A3 = apply(A2, 2, function(col) rank(-col) / length(col))
> A3
      V1  V2  V3  V4
[1,] 0.4 1.0 0.4 0.8
[2,] 0.6 0.2 0.6 0.4
[3,] 1.0 0.4 0.8 0.2
[4,] 0.8 0.6 0.2 0.6
[5,] 0.2 0.8 1.0 1.0





Notice that gene 3 has the greatest specificity (0.74) to condition V4, so it
is assigned the lowest percentile rank (0.2).

Compute the locus scores for a SNP locus \(k\) that overlaps genes 2 and
4, assuming that a single gene (either 2 or 4 but not both) is associated with
the trait:

> genes = c(2, 4)
> P = apply(A3[genes, ], 2, function(col) 1 - (1 - min(col)) ^ length(col))
> P
  V1   V2   V3   V4
0.84 0.36 0.36 0.64





Notice that the SNP locus \(k\) is most specific to conditions V2 and V3
(0.36), and this is because:


	gene 2 has the lowest specificity percentile (0.2) in condition V2

	gene 4 has the lowest specificity percentile (0.2) in condition V3
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Installation

On Linux 64-bit, you may use the provided executable

This runs on kernel 2.6.18 and newer:
https://github.com/slowkow/snpsea/releases

Otherwise, you must build the executable from source

The source code is available: https://github.com/slowkow/snpsea

Mac: To compile C++ code with the required dependencies, you need
XCode and MacPorts: http://guide.macports.org/#installing.xcode

Install the dependencies:

# Ubuntu
sudo apt-get install build-essential libopenmpi-dev libgsl0-dev

# Mac
#   First, install port (MacPorts): http://www.macports.org/
#   Next, use it to install the dependencies:
sudo port selfupdate && sudo port install gcc48 openmpi gsl

# Broad Institute
#   Add this line to ~/.my.bashrc or ~/.my.cshrc
use .gcc-4.8.1 .openmpi-1.4 .gsl-1.14





Download and compile the code:

#   Clone with git; easily get updates with 'git pull':
git clone https://github.com/slowkow/snpsea.git
cd snpsea

#   If you don't have git:
curl -LOk https://github.com/slowkow/snpsea/archive/master.zip
unzip master.zip; cd snpsea-master

cd src; make               #   Compile.
cp ../bin/snpsea* ~/bin/   #   Copy the executables wherever you like.






C++ Libraries

To compile SNPsea, you will need a modern C++ compiler that supports
c++0x [https://gcc.gnu.org/projects/cxx0x.html] and the dependencies
listed below. I compiled successfully with gcc versions 4.6.3 (the default
version for Ubuntu 12.04) and 4.8.1.

intervaltree [https://github.com/slowkow/intervaltree]


a minimal C++ interval tree implementation


Eigen [http://eigen.tuxfamily.org]


Eigen is a C++ template library for linear algebra: matrices,
vectors, numerical solvers, and related algorithms.


OpenMPI [http://www.open-mpi.org]


MPI is a standardized API typically used for parallel and/or
distributed computing. Open MPI is an open source, freely available
implementation.


GSL - GNU Scientific Library [http://www.gnu.org/software/gsl]


The GNU Scientific Library (GSL) is a numerical library for C and
C++ programmers.


GCC, the GNU Compiler [http://gcc.gnu.org]


The GNU Compiler Collection is a compiler system produced by the GNU
Project supporting various programming languages.





Python Packages

To plot visualizations of the results, you will need Python 2.7 and the
packages listed below.

Instructions: Install with pip [http://www.pip-installer.org]:

pip install docopt numpy pandas matplotlib





Note: The packages available on the Ubuntu repositories may be
outdated and might fail to work. So, avoid using apt-get for these
dependencies.

docopt [http://docopt.org/]


Command-line interface description language.


numpy [http://www.numpy.org]


NumPy is the fundamental package for scientific computing with
Python.


pandas [http://pandas.pydata.org]


pandas is an open source, BSD-licensed library providing
high-performance, easy-to-use data structures and data analysis
tools for the Python programming language.


matplotlib [http://matplotlib.org]


matplotlib is a python 2D plotting library which produces
publication quality figures in a variety of hardcopy formats and
interactive environments across platforms.


Note: On a server with no display, please edit your
matplotlibrc [http://matplotlib.org/users/customizing.html] file to
use the Agg backend:

perl -i -pe 's/^(\s*(backend).*)$/#$1\n$2:Agg/' ~/.matplotlib/matplotlibrc





Otherwise, you may see an error message like this:

_tkinter.TclError: no display name and no $DISPLAY environment variable








R Packages

Some visualizations use R and ggplot2 instead of Python and matplotlib.

Instructions: Start a session in R and run:

install.packages(c("data.table", "reshape2", "gap", "ggplot2"))





data.table [http://cran.r-project.org/web/packages/data.table]


Extension of data.frame for fast indexing, fast ordered joins, fast
assignment, fast grouping and list columns.


reshape2 [http://cran.r-project.org/web/packages/reshape2]


Flexibly reshape data: a reboot of the reshape package.


gap [http://cran.r-project.org/web/packages/gap]


Genetic analysis package.


ggplot2 [http://cran.r-project.org/web/packages/ggplot2]


An implementation of the Grammar of Graphics.
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Data

cd snpsea
curl -LOk http://files.figshare.com/1504037/SNPsea_data_20140520.zip
unzip SNPsea_data_20140520.zip





Download the compressed archive with data required to perform this
analysis (138M). The direct link to the zip shown above may be out of
date and fail to load. If so, please visit the link below instead:

http://dx.doi.org/10.6084/m9.figshare.871430

Contents of the compressed archive with data:

Celiac_disease-Trynka2011-35_SNPs.gwas
HDL_cholesterol-Teslovich2010-46_SNPs.gwas
Multiple_sclerosis-IMSGC-51_SNPs.gwas
Red_blood_cell_count-Harst2012-45_SNPs.gwas

GeneAtlas2004.gct.gz  # Gene Atlas 2004 Affymetrix expression matrix
ImmGen2012.gct.gz     # ImmGen 2012 Affymetrix expression matrix
FANTOM2014.gct.gz     # FANTOM5 2014 CAGE matrix
GO2013.gct.gz         # Gene Ontology 2013 binary annotation matrix

NCBIgenes2013.bed.gz  # NCBI gene intervals
Lango2010.txt.gz      # LD-pruned SNPs
TGP2011.bed.gz        # 1000 Genomes Project SNP linkage intervals






SNP sets









	Phenotype
	SNPs
	Loci
	Reference




	Celiac disease
	35
	34
	Table 2 (Trynka, et al. 2011 [http://www.ncbi.nlm.nih.gov/pubmed/22057235])


	HDL cholesterol
	46
	46
	Supp. Table 2 (Teslovich, et al. 2010 [http://www.ncbi.nlm.nih.gov/pubmed/20686565])


	Multiple sclerosis
	51
	47
	Supp. Table A (IMSGC WTCCC 2011 [http://www.ncbi.nlm.nih.gov/pubmed/21833088])


	Red blood cell count
	45
	45
	Table 1 (Harst et al. 2012 [http://www.ncbi.nlm.nih.gov/pubmed/23222517])






Celiac_disease-Trynka2011-35_SNPs.gwas

35 SNPs associated with Celiac disease taken from Table 2. Positions are
on hg19. All SNPs have \(P \le 5e-8\).


Trynka G, Hunt KA, Bockett NA, et al. Dense genotyping identifies and
localizes multiple common and rare variant association signals in celiac
disease. [http://www.ncbi.nlm.nih.gov/pubmed/22057235] Nat Genet.
2011;43(12):1193-201.





HDL_cholesterol-Teslovich2010-46_SNPs.gwas

46 SNPs associated with HDL taken from Supplementary Table 2. Positions
are on hg19. All SNPs have \(P \le 5e-8\).


Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and
population relevance of 95 loci for blood lipids. [http://www.ncbi.nlm.nih.gov/pubmed/20686565] Nature.
2010;466(7307):707-13.





Multiple_sclerosis-IMSGC-51_SNPs.gwas

51 SNPs associated with Multiple Sclerosis taken from Supplementary
Table A. Positions are on hg19. All SNPs have \(P \le 5e-8\).


Sawcer S, Hellenthal G, Pirinen M, et al. Genetic risk and a primary role
for cell-mediated immune mechanisms in multiple sclerosis. [http://www.ncbi.nlm.nih.gov/pubmed/21833088] Nature.
2011;476(7359):214-9.





Red_blood_cell_count-Harst2012-45_SNPs.gwas

45 SNPs associated with red blood cell count (RBC) taken from Table 1.
Positions are on hg19. All SNPs have \(P \le 5e-8\).


van der Harst P, Zhang W, Mateo leach I, et al. Seventy-five genetic loci
influencing the human red blood cell. [http://www.ncbi.nlm.nih.gov/pubmed/23222517] Nature.
2012;492(7429):369-75.







Gene matrices










	Type
	Genes
	Conditions
	Species
	Reference




	Affy
	17581
	79 tissues
	homo sapiens
	GeneAtlas 2004 [http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1133]


	Affy
	15139
	249 cells
	mus musculus
	ImmGen 2012 [http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15907]


	CAGE
	18502
	533 cells
	homo sapiens
	FANTOM5 2014 [http://fantom.gsc.riken.jp/5/data/]


	Binary
	19111
	1751 terms
	homo sapiens, mus musculus
	Gene Ontology [http://www.geneontology.org] 2013, Homologene [http://www.ncbi.nlm.nih.gov/homologene]






GeneAtlas2004.gct.gz

Gene expression data for 79 human tissues from
GSE1133 [http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1133].
We averaged the expression values for tissue replicates. For each gene,
we selected the single probe with the largest minimum value. Finally, we
converted the file to
GCT [http://www.broadinstitute.org/cancer/software/genepattern/gp_guides/file-formats/sections/gct]
format.


Su AI et al. A gene atlas of the mouse and human protein-encoding
transcriptomes. [http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1133] Proc Natl
Acad Sci U S A, 2004 Apr 9;101(16):6062-7.





GO2013.gct.gz

A GCT [http://www.broadinstitute.org/cancer/software/genepattern/gp_guides/file-formats/sections/gct]
formatted gene matrix with 1,751 annotation terms (1s and 0s indicating
presence or absence of the gene in a Gene Ontology term).

We downloaded the OBO file from Gene
Ontology [http://www.geneontology.org] (data-version: 2013-06-29, CVS
revision: 9700).

For each gene, we climbed the hierarchy of ontology terms and applied
parental terms. If a gene is annotated with some term \(T\), we also
add all of the terms that are parents of \(T\). We copy terms
between homologous genes using
Homologene [http://www.ncbi.nlm.nih.gov/homologene] data. If a mouse
gene is annotated with some term and the human homolog is not, then we
copy the term to the human gene. We discard all GO terms assigned to
fewer than 100 or to more than 1000 genes. This leaves us with a matrix
of 19,111 genes and 1,751 terms.




ImmGen2012.gct.gz

Gene expression data for 249 blood cell types from
GSE15907 [http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15907].
We averaged cell type replicates. For each gene, we selected the single
probe with the largest minimum.




FANTOM2014.gct.gz

CAGE data for 533 human cell types from
FANTOM5 [http://fantom.gsc.riken.jp/5/data/]. We averaged cell type
replicates. We discarded CAGE entries with 0 or multiple corresponding
NCBI Entrez IDs. Then, we summed the CAGE entries for each gene.






LD-pruned SNPs and Genomic Intervals


Lango2010.txt.gz

A list of SNPs that span the whole genome, pruned by linkage
disequilibrium (LD). SNPsea samples null SNP sets matched on the number
of genes in the user’s SNP set from this list. See this paper for more
information:


Lango allen H, Estrada K, Lettre G, et al. Hundreds of variants clustered
in genomic loci and biological pathways affect human height. [http://www.ncbi.nlm.nih.gov/pubmed/20881960] Nature.
2010;467(7317):832-8.





NCBIgenes2013.bed.gz

All human start and stop positions taken from:


ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2refseq.gz





TGP2011.bed.gz

Linkage intervals for a filtered set of SNPs from the 1000 Genomes Project [http://www.1000genomes.org/] Phase 1 (May 21, 2011). We downloaded
a filtered (diallelic and 5 or more copies of the minor allele) set of markers
from the BEAGLE [http://bochet.gcc.biostat.washington.edu/beagle/1000_Genomes.phase1_release_v3]
website and calculated pairwise LD (EUR) for all SNPs in a 1 Mb sliding
window. The linkage intervals were extended to the nearest HapMap [http://hapmap.ncbi.nlm.nih.gov/downloads/] recombination hotspot with >3
cM/Mb recombination rate ( Supplementary Figure 1 ).
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Usage

Here is a Bash [http://www.gnu.org/software/bash/manual/bashref.html]
script with a usage example:

options=(
    --snps              Red_blood_cell_count-Harst2012-45_SNPs.gwas
    --gene-matrix       GeneAtlas2004.gct.gz
    --gene-intervals    NCBIgenes2013.bed.gz
    --snp-intervals     TGP2011.bed.gz
    --null-snps         Lango2010.txt.gz
    --out               out
    --slop              10e3
    --threads           4
    --null-snpsets      0
    --min-observations  100
    --max-iterations    1e7
)
snpsea ${options[*]}





SNPsea will test SNPs associated with Red blood cell count for
tissue-specific expression of linked genes across 79 human tissues in
the Gene Atlas expression matrix. Each tissue will be tested up to 10
million times with matched random SNP sets, or testing will stop for a
tissue if 100 matched SNP sets achieve a higher specificity score than
the user’s SNPs.


Options

All input files may optionally be compressed with
`gzip <http://www.gzip.org/>`__.


Required

--snps ARG               Text file with SNP identifiers in the first
                         column. Instead of a file name, you may use
                         'randomN' with an integer N for a random SNP list
                         of length N.

--gene-matrix ARG        Gene matrix file in GCT format. The Name column
                         must contain the same gene identifiers as in
                         --gene-intervals.

--gene-intervals ARG     BED file with gene intervals. The fourth column
                         must contain the same gene identifiers as in
                         --gene-matrix.

--snp-intervals ARG      BED file with all known SNP intervals. The fourth
                         column must contain the same SNP identifiers as
                         in --snps and --null-snps.

--null-snps ARG          Text file with names of SNPs to sample when
                         generating null matched or random SNP sets.
                         These SNPs must be a subset of --snp-intervals.

--out ARG                Create output files in this directory. It will be
                         created if it does not already exist.








Optional

--condition ARG          Text file with a list of columns in --gene-matrix
                         to condition on before calculating p-values. Each
                         column in --gene-matrix is projected onto each
                         column listed in this file and its projection is
                         subtracted.

--slop ARG               If a SNP interval overlaps no gene intervals,
                         extend the SNP interval this many nucleotides
                         further and try again.
                         [default: 10000]

--threads ARG            Number of threads to use.
                         [default: 1]

--null-snpsets ARG       Test this many null matched SNP sets, so you can
                         compare your results to a distribution of null
                         results.
                         [default: 0]

--min-observations ARG   Stop testing a column in --gene-matrix after
                         observing this many null SNP sets with
                         specificity scores greater or equal to those
                         obtained with the SNP set in --snps. Increase
                         this value to obtain more accurate p-values.
                         [default: 25]

--max-iterations ARG     Maximum number of null SNP sets tested for each
                         column in --gene-matrix. Increase this value to
                         resolve smaller p-values.
                         [default: 10000]










Input File Formats


--snps ARG

You must provide one or more comma-separated text files. SNP identifiers
must be listed one per line. Lines starting with # are skipped. If
the file has no header, the first column is assumed to contain SNP
identifiers. Otherwise, SNPsea looks for a column named (case-sensitive)
SNP or snp or name or marker.

head Red_blood_cell_count-Harst2012-45_SNPs.gwas

# Harst et al. 2012
# doi:10.1038/nature11677
# PMID: 23222517
# 45 SNPs associated with red blood cell count (RBC) taken from Table 1.
# Positions are on hg19. SNPs are included if $P \le 5e-8$.
CHR POS SNP P
chr1    40069939    rs3916164   3e-10
chr1    158575729   rs857684    4e-16
chr1    199007208   rs7529925   8e-09
chr1    248039451   rs3811444   5e-10





Instead of providing a file with SNPs, you may use “randomN” like this:

--snps random20





to sample 20 random SNPs from the ``–snp-intervals`` file.




--gene-matrix ARG

You must provide a single gene matrix that must be in
GCT [http://www.broadinstitute.org/cancer/software/genepattern/gp_guides/file-formats/sections/gct]
format.

zcat GeneAtlas2004.gct.gz | cut -f1-4 | head

#1.2
17581  79
Name   Description  Colorectal_Adenocarcinoma  Whole_Blood
1      A1BG         115.5                      209.5
2      A2M          85                         328.5
9      NAT1         499                        1578
10     NAT2         115                        114
12     SERPINA3     419.5                      387.5
13     AADAC        125                        252.5
14     AAMP         2023                       942.5








--condition ARG (Optional)

You may provide column names present in the ``–gene-matrix`` file,
one per line. The matrix will be conditioned on these columns before the
analysis is performed to help you identify secondary signals independent
of these columns. Binary (0, 1) matrices will not be conditioned.

head conditions.txt

Whole_Blood








--gene-intervals ARG

You must provide gene intervals in BED format with a fourth column that
contains the same gene identifiers as those present in the Name column
of the ``–gene-matrix``
GCT [http://www.broadinstitute.org/cancer/software/genepattern/gp_guides/file-formats/sections/gct]
file. Only the first four columns are used.

zcat NCBIgenes2013.bed.gz | head

chr1  10003485   10045555   64802      NMNAT1
chr1  100111430  100160096  54873      PALMD
chr1  100163795  100164756  100129320  HMGB3P10
chr1  100174205  100232185  391059     FRRS1
chr1  10027438   10027515   100847055  MIR5697
chr1  100308165  100308317  100270894  RPL39P9
chr1  100315632  100389578  178        AGL
chr1  100433941  100435837  730081     LOC730081
chr1  100435344  100492534  23443      SLC35A3
chr1  100503669  100548932  64645      HIAT1








--snp-intervals ARG

SNP linkage intervals must be specified in BED format and include a
fourth column with the SNP identifiers. The linkage intervals assigned
to the trait-associated SNPs you provide with ``–snps`` are taken
from this file.

zcat TGP2011.bed.gz | head

chr1    0   254996  rs113759966
chr1    0   254996  rs114420996
chr1    0   254996  rs114608975
chr1    0   254996  rs115209712
chr1    0   254996  rs116400033
chr1    0   254996  rs116504101
chr1    0   254996  rs12184306
chr1    0   254996  rs12184307
chr1    0   254996  rs138808727
chr1    0   254996  rs139113303








--null-snps ARG

The null SNPs file must have one SNP identifier per line. Only the first
column is used. The identifiers must be a subset of the identifiers in
``–snp-intervals``.

zcat Lango2010.txt.gz | head

rs58108140  chr1    10583
rs180734498 chr1    13302
rs140337953 chr1    30923
rs141149254 chr1    54490
rs2462492   chr1    54676
rs10399749  chr1    55299
rs189727433 chr1    57952
rs149755937 chr1    59040
rs77573425  chr1    61989
rs116440577 chr1    63671










Output Files

The usage example shown above produces the following output files:

out/
    args.txt
    condition_pvalues.txt
    null_pvalues.txt
    snp_condition_scores.txt
    snp_genes.txt






args.txt

The command line arguments needed to reproduce the analysis.

cat args.txt

# SNPsea v1.0.2
--snps             Red_blood_cell_count-Harst2012-45_SNPs.gwas
--gene-matrix      GeneAtlas2004.gct.gz
--gene-intervals   NCBIgenes2013.bed.gz
--snp-intervals    TGP2011.bed.gz
--null-snps        Lango2010.txt.gz
--out              out
--score            single
--slop             100000
--threads          8
--null-snpsets     0
--min-observations 100
--max-iterations   10000000





Repeat the analysis:

snpsea --args args.txt








condition_pvalues.txt

The p-values representing enrichment of condition-specificity for the
given SNPs.

head condition_pvalues.txt | column -t

condition                  pvalue     nulls_observed  nulls_tested
Colorectal_Adenocarcinoma  0.933555   280             300
Whole_Blood                0.521595   156             300
BM-CD33+Myeloid            0.159772   111             700
PB-CD14+Monocytes          0.103264   154             1500
PB-BDCA4+Dentritic_cells   0.0606256  187             3100
PB-CD56+NK_cells           0.194009   135             700
PB-CD4+T_cells             0.428571   128             300
PB-CD8+T_cells             0.531561   159             300
PB-CD19+B_cells            0.226819   158             700








null_pvalues.txt

If the argument for ``–snps`` is the name of a file, the p-values
for null matched SNP sets. You can compare these null results to the
results for your trait-associated SNPs.

If the argument for ``–snps`` is “randomN” where N is some integer,
like “random20” the p-values for random unmatched SNP sets, each with N
SNPs.

The fifth column is the replicate index. The number of replicates
performed is specified with ``–null-snpsets INT``.

head null_pvalues.txt | column -t

ColorectalAdenocarcinoma  0.056     84   1500  0
WholeBlood                0.236667  71   300   0
BM-CD33+Myeloid           0.55      55   100   0
PB-CD14+Monocytes         0.59      59   100   0
PB-BDCA4+Dentritic_Cells  0.59      59   100   0
PB-CD56+NKCells           0.71      71   100   0
PB-CD4+Tcells             0.383333  115  300   0
PB-CD8+Tcells             0.128571  90   700   0
PB-CD19+Bcells            0.168571  118  700   0
BM-CD105+Endothelial      0.386667  116  300   0








snp_genes.txt

Each SNP’s linkage interval and overlapping genes. If a SNP is not found
in the reference file specified with ``–snp-intervals``, then the
name of the SNP will be listed and the other columns will contain
NA.

head snp_genes.txt | column -t

chrom  start      end        snp         n_genes  genes
chr4   55364224   55408999   rs218238    0        NA
chr6   139827777  139844854  rs590856    0        NA
NA     NA         NA         rs99999999  NA       NA
chr6   109505894  109651220  rs1008084   2        8763,27244
chr10  71089843   71131638   rs10159477  1        3098
chr2   111807303  111856057  rs10207392  1        55289
chr16  88831494   88903796   rs10445033  4        353,2588,9780,81620
chr7   151396253  151417368  rs10480300  1        51422
chr12  4320955    4336783    rs10849023  2        894,57103
chr15  76129642   76397903   rs11072566  4        26263,92912,123591,145957








snp_condition_scores.txt

Each SNP, condition, gene with greatest specificity to that condition,
and score for the SNP-condition pair, adjusted for the number of genes
overlapping the given SNP’s linkage interval.

head snp_condition_scores.txt | column -t

snp        condition                  gene   score
rs9349204  Colorectal_Adenocarcinoma  10817  0.693027
rs9349204  Whole_Blood                896    0.285864
rs9349204  BM-CD33+Myeloid            896    0.236487
rs9349204  PB-CD14+Monocytes          29964  0.340561
rs9349204  PB-BDCA4+Dentritic_cells   29964  0.411727
rs9349204  PB-CD56+NK_cells           896    0.0356897
rs9349204  PB-CD4+T_cells             896    0.38182
rs9349204  PB-CD8+T_cells             896    0.332008
rs9349204  PB-CD19+B_cells            29964  0.255196
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Output Visualizations


View enrichment of tissue-specific gene expression


[image: ]


A horizontal bar plot of negative log10 p-values for a test of 45
red blood cell count-associated SNPs for enrichment of tissue-specific
expression in profiles of 79 human tissues and cells.

python bin/snpsea-barplot out








View the most specifically expressed gene for each SNP-tissue pair


[image: ]


A heatmap exposing the contributions of specifically expressed genes
within each SNP linkage interval to the specificity scores of each
tissue.

python bin/snpsea-heatmap out








View the type 1 error rate estimates for each tissue


[image: ]


A scatter plot of the observed proportion of p-values under various
thresholds after repeating the analysis with 10,000 random SNP sets.

Rscript bin/snpsea-type1error out
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Supplementary Figures


Supplementary Figure 1: Determining SNP linkage intervals


[image: ]


We calculated \(r^{2}\) values for all pairs of SNPs within a 1 Mb
sliding window along each chromosome. Next, we assigned each of the SNPs
from The 1000 Genomes Project Phase I (1000 Genomes Consortium 2012) to
a linkage interval by identifying each SNP’s furthest upstream and
downstream neighbors with \(r^{2}\ge0.5\). Finally, we extended each
interval to recombination hotspots reported by HapMap (Myers et al.
2005) with recombination rate >3 cM/Mb.




Supplementary Figure 2: Counting genes in GWAS SNP linkage intervals


[image: ]


A cumulative density plot of the number of genes overlapped by the
linkage intervals of GWAS SNPs. We downloaded the GWAS Catalog SNPs on
January 17, 2014 and selected the 11,561 SNPs present in the 1000
Genomes Project (1000 Genomes Consortium 2012). Of these SNPs, 2,119
(18%) of them have linkage disequilibrium (LD) intervals that overlap no
genes, and 3,756 (32%) overlap a single gene. The remaining 50% of SNPs
overlap 2 or more genes. This illustrates the critical issue that many
SNPs implicate more than one gene.




Supplementary Figure 3: Choosing the \(r^{2}\) threshold for linkage intervals

We chose to use \(r^{2}\geq0.5\) due to previous experience (Rossin
et al. 2011). To investigate if this choice influences SNPsea results,
we repeated the analysis of 45 red blood cell count-associated SNPs (Van
der Harst et al. 2012) using 5 different thresholds (\(r^{2}\ge\)
0.2, 0.4, 0.6, 0.8, 1.0). We also did this for SNPs associated with
multiple sclerosis, celiac disease, and HDL cholesterol.

[image: image2]

[image: image3]

Gene Atlas and Gene Ontology (left and right). Each subplot has
\(-\text{log}_{10}P\) for \(r^{2}=1\) on the x-axis and
\(-\text{log}_{10}P\) on the y-axis for the \(r^{2}\) threshold
marked above. Grey lines are significance thresholds after correction
testing multiple conditions (cell types, GO annotations). Black points
are significant and grey are not. We used the ’--score single’
option. Red blood cell count SNPs are enriched for hemopoiesis
(GO:0030097) (\(P=2\times10^{-5}\)) for linkage intervals with
\(r^{2}=(0.6,0.8,1.0)\). This result falls below the multiple
testing threshold at \(r^{2}\ge0.4\), but remains significant at
\(r^{2}\ge0.5\) (see main text).




Supplementary Figure 4: Each trait-associated locus harbors a single associated gene


[image: ]


Quantile-quantile plots for Gene Atlas (Su et al. 2004) and Gene
Ontology (top and bottom). The x and y axes are
\(-\text{log}_{10}P\) for ’--score single’ and ’--score total’
SNPsea options, respectively. The ’single’ and ’total’ methods
are described . The \(P\)-values appear similar between methods.




Supplementary Figure 5: Type 1 error estimates


[image: ]



[image: ]


We sampled 10,000 sets of 100 SNPs uniformly from a list of LD-pruned
SNPs (Lango Allen et al. 2010). We tested each of the 10,000 sets for
enrichment of tissue-specific expression in the Gene Atlas (Su et al.
2004) gene expression matrix (top) and for enrichment of annotation with
Gene Ontology terms (bottom). For each condition, we show the proportion
of the 10,000 enrichment p-values that are below the given thresholds.
We observe that the p-values are near the expected values, so the type 1
(false positive) error rate is well-calibrated.


Additional Examples

We tested SNPsea with the three additional phenotypes listed below with
genome-wide significant SNPs \((P\leq5\times10^{-8})\). When
multiple SNPs implicated the same genes, we merged them into a single
locus. We tested each phenotype with the Gene Atlas and GO matrices with
the ’--score single’ option. The adjacent heatmaps show Pearson
correlation coefficients for all pairs of conditions.









	Phenotype
	SNPs
	Loci
	Reference




	Multiple sclerosis
	51
	47
	Supp. Table A (IMSGC WTCCC 2011)


	Celiac disease
	35
	34
	Table 2 (Trynka, et al. 2011)


	HDL cholesterol
	46
	46
	Supp. Table 2 (Teslovich, et al. 2010)










Supplementary Figure 6: Red blood cell count GO enrichment


[image: ]


We observed significant enrichment for hemopoiesis
\((2\times10^{-5})\). The top 25 terms are shown.




Supplementary Figure 7: Multiple sclerosis


[image: ]


We observed significant enrichment for 6 cell types. The top 25 of 79
are shown.


[image: ]


We observed significant enrichment for 52 Gene Ontology terms. The top
60 terms are shown.




Supplementary Figure 8: Celiac disease


[image: ]


We observed significant enrichment for 3 cell types. The top 25 of 79
are shown.


[image: ]


We observed significant enrichment for 28 Gene Ontology terms. The top
40 terms are shown.




Supplementary Figure 9: HDL cholesterol


[image: ]


We observed significant enrichment for liver tissue-specific gene
expression. The top 25 of 79 are shown.


[image: ]


We observed significant enrichment for 13 Gene Ontology terms. The top
25 terms are shown.
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