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CHAPTER 1

Introduction

SNPsea is an algorithm to identify cell types and pathways likely to be affected by risk loci. It requires a list of SNP
identifiers and a matrix of genes and conditions.

Genome-wide association studies (GWAS) have discovered multiple genomic loci associated with risk for different
types of disease. SNPsea provides a simple way to determine the types of cells influenced by genes in these risk loci.

Suppose disease-associated alleles influence a small number of pathogenic cell types. We hypothesize that genes with
critical functions in those cell types are likely to be within risk loci for that disease. We assume that a gene’s specificity
to a cell type is a reasonable indicator of its importance to the unique function of that cell type.

First, we identify the genes in linkage disequilibrium (LD) with the given trait-associated SNPs and score the gene set
for specificity to each cell type. Next, we define a null distribution of scores for each cell type by sampling random
SNP sets matched on the number of linked genes. Finally, we evaluate the significance of the original gene set’s
specificity by comparison to the null distributions: we calculate an exact permutation p-value.

SNPsea is a general algorithm. You may provide your own:

1. Continuous gene matrix with gene expression profiles (or other values).

2. Binary gene annotation matrix with presence/absence 1/0 values.

We provide you with three expression matrices and one annotation matrix. See Data.

The columns of the matrix may be tissues, cell types, GO annotation codes, or other conditions.

Note: Continuous matrices must be normalized before running SNPsea. That is, columns must be directly comparable
to each other. For example, you might consider quantile normalization.

If you benefit from this method, please cite:

Slowikowski, K. et al. SNPsea: an algorithm to identify cell types, tissues, and pathways affected by risk
loci. Bioinformatics (2014).

See the first description of the algorithm and additional examples here:

Hu, X. et al. Integrating autoimmune risk loci with gene-expression data identifies specific pathogenic
immune cell subsets. The American Journal of Human Genetics 89, 496–506 (2011).
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CHAPTER 2

Visual Summary

2.1 Cartoon

This cartoon illustrates the key ideas of the algorithm:

A| Step 1. Each SNP in a set of disease-associated SNPs is in linkage disequilibrium (LD) with multiple genes. The
genes are scored, in aggregate, for specificity to each tissue.

B| Step 2: The algorithm is repeated with random null SNP sets that are not associated with any phenotype. These
have been selected from an LD-pruned list of SNPs, so the whole genome is covered.

C| Step 3: The random SNP set scores form the null distributions which allows us to determine statistical significance
for enrichment of specificity to a particular tissue/cell-type/condition.

2.2 Flow Chart

This flow chart shows the input data required to perform the analysis, and a summary of the intermediate steps.

5
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CHAPTER 3

Algorithm Details

SNPsea tests if genes implicated by risk loci (e.g., those discovered through genome-wide association (GWA) studies)
are specifically expressed in some conditions over others, and if this specificity is statistically significant. The program
requires two inputs:

1. A list of SNP identifiers: rs123, 12:456, ...

2. A matrix of genes and conditions, such as:

• Gene expression profiles of multiple different cell types.

• Ontology terms and presence/absence 1/0 values for each gene in each term.

For example, SNPsea can be used to find tissues or cell types whose function is likely to be influenced by genes in risk
loci. If the genes in risk loci are used in relatively few cell types, we hypothesize that they are likely to affect those
cell types’ unique functions. This assumes that expression specificity is a good indicator of a gene’s importance to the
unique function of the cell type.

For a given set of SNPs associated to some phenotype, SNPsea tests whether all implicated genes, in aggregate, are
enriched for specificity to a condition in a user-provided matrix of genes and conditions/annotations. The algorithm
consists of three steps:

• Step 1: Assigning genes to each SNP

– We use linkage disequilibrium (LD) to identify the genes implicated by each SNP.

• Step 2: Calculating specificity scores

– We look up implicated genes in a user-provided matrix and calculate a specificity score for each annota-
tion/condition based on the values of these genes.

• Step 3: Testing significance

– We compare the specificity scores to a null distribution of scores obtained with random sets of matched
SNP sets and compute an empirical 𝑃 -value.

3.1 Step 1: Assigning genes to each SNP

Accurate analyses must address the critical issue that SNPs frequently implicate a region with multiple different genes
( Supplementary Figure 2 ). The challenge is to find evidence to show which of those genes are associated with a given
trait.

We determine the genes plausibly implicated by each trait-associated SNP using a previously described strategy (
Supplementary Figure 1 and Rossin et al. 2011). First, we define the linkage interval for a given SNP as the span
between the furthest correlated SNPs 𝑟2 > 0.5 (EUR) within a 1 Mb window (1000 Genomes Consortium 2012).

7
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Next, we extend the interval to the nearest recombination hotspots with recombination rate >3 cM/Mb (Myers et al.
2005). To address the case when no genes overlap an interval, we provide an option for SNPsea to extend the interval
up- and downstream (by default 10 Kb).

Most frequently, we find multiple genes (𝑚𝑘 > 1) in a single SNP locus 𝑘. We expect many loci with multiple genes
because of regions with high LD across long stretches of a chromosome. Less frequently, a locus has a single gene
(𝑚𝑘 = 1), and loci with no genes (𝑚𝑘 = 0) are discarded.

After each SNP has been assigned an interval and a set of genes overlapping the interval, we merge SNPs with shared
genes into a single locus to avoid multiple-counting of genes.

3.1.1 Two score options

By default, SNPsea assumes one gene in each associated locus is associated with the given trait. We also include the
option to assume all genes within a locus are associated. We compare results of the two options with four phenotypes
( Supplementary Figure 4 ).

1. The ’--score single’ method (default option) assumes that a single gene in each locus is associated with
the given phenotype. For each condition, we choose the gene in each locus with the greatest specificity to that
condition.

2. The ’--score total’method assumes that all genes in a SNP’s linkage interval are associated. We account
for all linked genes when calculating scores.

3.2 Step 2: Calculating specificity scores

SNPsea uses different algorithms for matrices with continuous or binary values. Before running SNPsea, a matrix
with continuous values must be normalized so that columns are directly comparable. It is not appropriate to use this
method on a “raw” matrix of expression values.

3.2.1 Specificity for a matrix of continuous values

We extend an approach we have previoulsy described in detail (Hu et al. 2011). Let 𝐴 denote a continuous gene
expression matrix with 𝑚 genes and 𝑛 conditions. First, we normalize the expression of each gene by dividing each
value by the L2 norm of the genes values in different conditions.

𝐴′
𝑖,𝑗 =

𝐴𝑖,𝑗√︁
𝐴2

𝑖,1 + 𝐴2
𝑖,2 + · · · + 𝐴2

𝑖,𝑛

The resulting matrix 𝐴′ has values 𝐴′
𝑖,𝑗 between 0 and 1 indicating specificity of gene 𝑖 to condition 𝑗. A value

𝐴′
𝑖,𝑗 = 1 indicates that gene 𝑖 is exclusively expressed in condition 𝑗, and 𝐴′

𝑖,𝑗 = 0 indicates that gene 𝑖 is not
expressed in condition 𝑗.

Next, we transform 𝐴′ to a matrix 𝐴′′ of non-parametric condition-specificity percentiles as follows. For each con-
dition 𝑗, we rank the values of 𝐴′

,𝑗 in descending order and divide them by the number of genes 𝑚, resulting in
percentiles between 0 and 1 where a lower value indicates greater specificity to the given condition.

𝐴′′
𝑖,𝑗 =

Rank𝑗(𝐴′
𝑖,𝑗)

𝑚

8 Chapter 3. Algorithm Details
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3.2.2 Locus scores for a matrix of continuous values

We create a new matrix 𝑃 , where each value 𝑃𝑘,𝑗 is a score for a SNP locus 𝑘 and a condition 𝑗. The locus scores
𝑃,𝑗 for a single condition 𝑗 are approximately uniformly distributed for a set of randomly selected loci under the
following assumption: for the set of genes in a given SNP locus 𝐼𝑘, the values 𝐴′′

𝑖∈𝐼𝑘,𝑗
are random, independent, and

approximately uniformly distributed. We’ll come back to this assumption later when testing significance in Step 3
below.

3.2.3 ’--score single’ (default)

This approach assumes one gene in each SNP locus is associated with the trait.

For each locus-condition pair (𝑘, 𝑗), we choose the single gene 𝑖 in locus 𝑘 with greatest specificity to condition 𝑗
among the 𝑚𝑘 genes in the locus, as previously described in Hu et al. (Hu et al. 2011). Let 𝑔𝑘 denote this most
specific gene, so that 𝐴′′

𝑔𝑘,𝑗
= Min𝑖∈𝐼𝑘(𝐴′′

𝑖,𝑗) where 𝐼𝑘 denotes the set of genes in locus 𝑘. If we assume values of
𝐴′′

𝑖∈𝐼𝑘,𝑗
are uniformly distributed for a given condition 𝑗 and genes 𝑖 ∈ 𝐼𝑘, then the probability of obtaining a value

equal to or less than 𝐴′′
𝑔𝑘,𝑗

is as follows:

𝑃𝑘,𝑗 = 1 − (1 − Min𝑖∈𝐼𝑘(𝐴′′
𝑖,𝑗))

𝑚𝑘

3.2.4 ’--score total’

This assumes all genes in a given SNP locus are associated with a trait — we consider this model to be unlikely in
most situations. We compute the probability of observing values 𝐴′′

𝑖∈𝐼𝑘
for some locus 𝑘 as the product of percentiles.

This assumes 𝐴′′
𝑖∈𝐼𝑘

values are uniformly distributed.

𝑃𝑘,𝑗 =

∫︁ ∞

𝑥

Γ(𝑚𝑘, 1) for 𝑥 =
∑︁
𝑖∈𝐼𝑘

−ln𝐴′′
𝑖,𝑗

3.2.5 Locus scores for a matrix of binary values

Let 𝐵 denote a binary matrix (1=present, 0=absent) with 𝑚 genes and 𝑛 conditions. Let 𝑚𝑗 denote the number of
genes present in condition 𝑗. Let 𝑚𝑘 denote the number of genes in locus 𝑘 and 𝑚𝑘,𝑗 ≤ 𝑚𝑘 denote the number of
genes in locus 𝑘 that are present in condition 𝑗.

We provide two options to calculate locus scores. By default, we account for presence or absence of any of the 𝑚𝑘

genes in condition 𝑗, as shown below (’--score single’). Alternatively, we account for the number of genes in
a given locus (’--score total’).

‘’–score single’ ’--score total’

𝑃𝑘,𝑗 =

{︃
1 − 𝑝(0) 𝑚𝑘,𝑗 > 0

1 𝑚𝑘,𝑗 = 0
𝑃𝑘,𝑗 =

{︃
1 −

∑︀𝑚𝑘,𝑗−1
𝑥=0 𝑝(𝑥) 𝑚𝑘,𝑗 > 0

1 𝑚𝑘,𝑗 = 0

where

𝑝(𝑥) =

(︀
𝑚𝑗

𝑥

)︀(︀
𝑚−𝑚𝑗

𝑚𝑘−𝑥

)︀(︀
𝑚
𝑚𝑘

)︀

3.2. Step 2: Calculating specificity scores 9
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3.2.6 Condition specificity scores

For both continuous and binary matrices, we define a specificity score 𝑆𝑗 for each condition 𝑗 as the aggregate of 𝑃𝑘,𝑗

values across SNP loci:

𝑆𝑗 =
∑︁
𝑘

−log𝑃𝑘,𝑗

3.3 Step 3: Testing significance

3.3.1 Analytical p-values

We previously found that aggregating the 𝑃𝑘,𝑗 scores and determining a 𝑃 -value analytically from a distribution results
in inaccurate p-values (Hu et al. 2011). 𝐴′′

𝑖,𝑗 values may be relatively uniform genome-wide, but proximate genes often
have shared functions. The genome has a complex correlation structure of linkage disequilibrium, gene density, gene
size and function that is challenging to model analytically. We use the sampling strategy described below instead.

3.3.2 Permutation p-values

For each condition, we use a sampling approach to calculate an empirical p-value. This is the tail probability of
observing a condition-specificity score greater or equal to 𝑆𝑗 . We obtain the distribution empirically with null SNP
sets.

We compute specificity scores 𝑆 for random SNP sets. Each SNP in a null set is matched to a SNP in the user’s set on
the number of linked genes. To adequately sample genes from the entire genome, we sample SNP sets from a list of
LD-pruned SNPs (subset of SNPs in 1000 Genomes Project) (Lango Allen et al. 2010).

For each condition 𝑗, we calculate an exact permutation p-value (Phipson et al. 2010). Let 𝑎𝑗 denote the number of
sampled SNP sets (e.g. 10,000) and let 𝑏𝑗 denote how many null specificity scores are greater than or equal to the
user’s score 𝑆𝑗 :

𝑝𝑗 =
𝑏𝑗 + 1

𝑎𝑗 + 1

We implemented adaptive sampling to calculate p-values efficiently. As each condition is tested for significance, we
increase the number of iterations to resolve significant p-values and save computation by using fewer iterations for
less significant p-values. Two options allow the user to control the adaptive sampling:

1. ’--max-iterations N’ The maximum number of iterations for each condition. We stop testing a condi-
tion after sampling 𝑁 SNP sets.

2. ’--min-observations N’ The minimum number of observed null specificity scores greater than or equal
to 𝑆𝑗 required to stop sampling SNP sets for a condition 𝑗.

3.4 Example

Suppose we have a gene expression matrix 𝐴:

> A1 = read.table(text = "
2.55 0.05 3.28 1.11
2.63 4.53 4.66 3.89
0.61 3.31 2.49 4.59
0.82 1.27 4.47 2.31

10 Chapter 3. Algorithm Details



SNPsea Documentation, Release 1.0.3

4.91 1.23 0.51 0.95")
> A1

V1 V2 V3 V4
1 2.55 0.05 3.28 1.11
2 2.63 4.53 4.66 3.89
3 0.61 3.31 2.49 4.59
4 0.82 1.27 4.47 2.31
5 4.91 1.23 0.51 0.95

Compute the specificity (L2 norm) of each gene (row) to each condition (column):

> A2 = t(apply(A1, 1, function(row) row / sqrt( sum(row ^ 2) )))
> A2

V1 V2 V3 V4
[1,] 0.59293508 0.01162618 0.76267727 0.2581012
[2,] 0.32801918 0.56499121 0.58120508 0.4851690
[3,] 0.09818755 0.53278820 0.40079837 0.7388211
[4,] 0.15607783 0.24173030 0.85081451 0.4396827
[5,] 0.94873958 0.23766796 0.09854525 0.1835647

Rank the genes in each condition and convert to percentiles:

A3 = apply(A2, 2, function(col) rank(-col) / length(col))
> A3

V1 V2 V3 V4
[1,] 0.4 1.0 0.4 0.8
[2,] 0.6 0.2 0.6 0.4
[3,] 1.0 0.4 0.8 0.2
[4,] 0.8 0.6 0.2 0.6
[5,] 0.2 0.8 1.0 1.0

Notice that gene 3 has the greatest specificity (0.74) to condition V4, so it is assigned the lowest percentile rank (0.2).

Compute the locus scores for a SNP locus 𝑘 that overlaps genes 2 and 4, assuming that a single gene (either 2 or 4 but
not both) is associated with the trait:

> genes = c(2, 4)
> P = apply(A3[genes, ], 2, function(col) 1 - (1 - min(col)) ^ length(col))
> P

V1 V2 V3 V4
0.84 0.36 0.36 0.64

Notice that the SNP locus 𝑘 is most specific to conditions V2 and V3 (0.36), and this is because:

• gene 2 has the lowest specificity percentile (0.2) in condition V2

• gene 4 has the lowest specificity percentile (0.2) in condition V3

3.4. Example 11
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CHAPTER 4

Installation

On Linux 64-bit, you may use the provided executable

This runs on kernel 2.6.18 and newer: https://github.com/slowkow/snpsea/releases

Otherwise, you must build the executable from source

The source code is available: https://github.com/slowkow/snpsea

Mac: To compile C++ code with the required dependencies, you need XCode and MacPorts:
http://guide.macports.org/#installing.xcode

Install the dependencies:

# Ubuntu
sudo apt-get install build-essential libopenmpi-dev libgsl0-dev

# Mac
# First, install port (MacPorts): http://www.macports.org/
# Next, use it to install the dependencies:
sudo port selfupdate && sudo port install gcc48 openmpi gsl

# Broad Institute
# Add this line to ~/.my.bashrc or ~/.my.cshrc
use .gcc-4.8.1 .openmpi-1.4 .gsl-1.14

Download and compile the code:

# Clone with git; easily get updates with 'git pull':
git clone https://github.com/slowkow/snpsea.git
cd snpsea

# If you don't have git:
curl -LOk https://github.com/slowkow/snpsea/archive/master.zip
unzip master.zip; cd snpsea-master

cd src; make # Compile.
cp ../bin/snpsea* ~/bin/ # Copy the executables wherever you like.

4.1 C++ Libraries

To compile SNPsea, you will need a modern C++ compiler that supports c++0x and the dependencies listed below. I
compiled successfully with gcc versions 4.6.3 (the default version for Ubuntu 12.04) and 4.8.1.

13
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intervaltree

a minimal C++ interval tree implementation

Eigen

Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algo-
rithms.

OpenMPI

MPI is a standardized API typically used for parallel and/or distributed computing. Open MPI is an open
source, freely available implementation.

GSL - GNU Scientific Library

The GNU Scientific Library (GSL) is a numerical library for C and C++ programmers.

GCC, the GNU Compiler

The GNU Compiler Collection is a compiler system produced by the GNU Project supporting various
programming languages.

4.2 Python Packages

To plot visualizations of the results, you will need Python 2.7 and the packages listed below.

Instructions: Install with pip:

pip install docopt numpy pandas matplotlib

Note: The packages available on the Ubuntu repositories may be outdated and might fail to work. So, avoid using
apt-get for these dependencies.

docopt

Command-line interface description language.

numpy

NumPy is the fundamental package for scientific computing with Python.

pandas

pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures
and data analysis tools for the Python programming language.

matplotlib

matplotlib is a python 2D plotting library which produces publication quality figures in a variety of hard-
copy formats and interactive environments across platforms.

Note: On a server with no display, please edit your matplotlibrc file to use the Agg backend:

perl -i -pe 's/^(\s*(backend).*)$/#$1\n$2:Agg/' ~/.matplotlib/matplotlibrc

Otherwise, you may see an error message like this:

_tkinter.TclError: no display name and no $DISPLAY environment variable

14 Chapter 4. Installation
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http://matplotlib.org/users/customizing.html


SNPsea Documentation, Release 1.0.3

4.3 R Packages

Some visualizations use R and ggplot2 instead of Python and matplotlib.

Instructions: Start a session in R and run:

install.packages(c("data.table", "reshape2", "gap", "ggplot2"))

data.table

Extension of data.frame for fast indexing, fast ordered joins, fast assignment, fast grouping and list
columns.

reshape2

Flexibly reshape data: a reboot of the reshape package.

gap

Genetic analysis package.

ggplot2

An implementation of the Grammar of Graphics.

4.3. R Packages 15
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CHAPTER 5

Data

cd snpsea
curl -LOk http://files.figshare.com/1504037/SNPsea_data_20140520.zip
unzip SNPsea_data_20140520.zip

Download the compressed archive with data required to perform this analysis (138M). The direct link to the zip shown
above may be out of date and fail to load. If so, please visit the link below instead:

http://dx.doi.org/10.6084/m9.figshare.871430

Contents of the compressed archive with data:

Celiac_disease-Trynka2011-35_SNPs.gwas
HDL_cholesterol-Teslovich2010-46_SNPs.gwas
Multiple_sclerosis-IMSGC-51_SNPs.gwas
Red_blood_cell_count-Harst2012-45_SNPs.gwas

GeneAtlas2004.gct.gz # Gene Atlas 2004 Affymetrix expression matrix
ImmGen2012.gct.gz # ImmGen 2012 Affymetrix expression matrix
FANTOM2014.gct.gz # FANTOM5 2014 CAGE matrix
GO2013.gct.gz # Gene Ontology 2013 binary annotation matrix

NCBIgenes2013.bed.gz # NCBI gene intervals
Lango2010.txt.gz # LD-pruned SNPs
TGP2011.bed.gz # 1000 Genomes Project SNP linkage intervals

5.1 SNP sets

Phenotype SNPs Loci Reference
Celiac disease 35 34 Table 2 (Trynka, et al. 2011)
HDL cholesterol 46 46 Supp. Table 2 (Teslovich, et al. 2010)
Multiple sclerosis 51 47 Supp. Table A (IMSGC WTCCC 2011)
Red blood cell count 45 45 Table 1 (Harst et al. 2012)

5.1.1 Celiac_disease-Trynka2011-35_SNPs.gwas

35 SNPs associated with Celiac disease taken from Table 2. Positions are on hg19. All SNPs have 𝑃 ≤ 5𝑒− 8.

Trynka G, Hunt KA, Bockett NA, et al. Dense genotyping identifies and localizes multiple common and
rare variant association signals in celiac disease. Nat Genet. 2011;43(12):1193-201.
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5.1.2 HDL_cholesterol-Teslovich2010-46_SNPs.gwas

46 SNPs associated with HDL taken from Supplementary Table 2. Positions are on hg19. All SNPs have 𝑃 ≤ 5𝑒− 8.

Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for
blood lipids. Nature. 2010;466(7307):707-13.

5.1.3 Multiple_sclerosis-IMSGC-51_SNPs.gwas

51 SNPs associated with Multiple Sclerosis taken from Supplementary Table A. Positions are on hg19. All SNPs have
𝑃 ≤ 5𝑒− 8.

Sawcer S, Hellenthal G, Pirinen M, et al. Genetic risk and a primary role for cell-mediated immune
mechanisms in multiple sclerosis. Nature. 2011;476(7359):214-9.

5.1.4 Red_blood_cell_count-Harst2012-45_SNPs.gwas

45 SNPs associated with red blood cell count (RBC) taken from Table 1. Positions are on hg19. All SNPs have
𝑃 ≤ 5𝑒− 8.

van der Harst P, Zhang W, Mateo leach I, et al. Seventy-five genetic loci influencing the human red blood
cell. Nature. 2012;492(7429):369-75.

5.2 Gene matrices

Type Genes Conditions Species Reference
Affy 17581 79 tissues homo sapiens GeneAtlas 2004
Affy 15139 249 cells mus musculus ImmGen 2012
CAGE 18502 533 cells homo sapiens FANTOM5 2014
Binary 19111 1751 terms homo sapiens, mus musculus Gene Ontology 2013, Homologene

5.2.1 GeneAtlas2004.gct.gz

Gene expression data for 79 human tissues from GSE1133. We averaged the expression values for tissue replicates.
For each gene, we selected the single probe with the largest minimum value. Finally, we converted the file to GCT
format.

Su AI et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci
U S A, 2004 Apr 9;101(16):6062-7.

5.2.2 GO2013.gct.gz

A GCT formatted gene matrix with 1,751 annotation terms (1s and 0s indicating presence or absence of the gene in a
Gene Ontology term).

We downloaded the OBO file from Gene Ontology (data-version: 2013-06-29, CVS revision: 9700).

For each gene, we climbed the hierarchy of ontology terms and applied parental terms. If a gene is annotated with
some term 𝑇 , we also add all of the terms that are parents of 𝑇 . We copy terms between homologous genes using
Homologene data. If a mouse gene is annotated with some term and the human homolog is not, then we copy the term
to the human gene. We discard all GO terms assigned to fewer than 100 or to more than 1000 genes. This leaves us
with a matrix of 19,111 genes and 1,751 terms.
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5.2.3 ImmGen2012.gct.gz

Gene expression data for 249 blood cell types from GSE15907. We averaged cell type replicates. For each gene, we
selected the single probe with the largest minimum.

5.2.4 FANTOM2014.gct.gz

CAGE data for 533 human cell types from FANTOM5. We averaged cell type replicates. We discarded CAGE entries
with 0 or multiple corresponding NCBI Entrez IDs. Then, we summed the CAGE entries for each gene.

5.3 LD-pruned SNPs and Genomic Intervals

5.3.1 Lango2010.txt.gz

A list of SNPs that span the whole genome, pruned by linkage disequilibrium (LD). SNPsea samples null SNP sets
matched on the number of genes in the user’s SNP set from this list. See this paper for more information:

Lango allen H, Estrada K, Lettre G, et al. Hundreds of variants clustered in genomic loci and biological
pathways affect human height. Nature. 2010;467(7317):832-8.

5.3.2 NCBIgenes2013.bed.gz

All human start and stop positions taken from:

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2refseq.gz

5.3.3 TGP2011.bed.gz

Linkage intervals for a filtered set of SNPs from the 1000 Genomes Project Phase 1 (May 21, 2011). We downloaded
a filtered (diallelic and 5 or more copies of the minor allele) set of markers from the BEAGLE website and calculated
pairwise LD (EUR) for all SNPs in a 1 Mb sliding window. The linkage intervals were extended to the nearest HapMap
recombination hotspot with >3 cM/Mb recombination rate ( Supplementary Figure 1 ).
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CHAPTER 6

Usage

Here is a Bash script with a usage example:

options=(
--snps Red_blood_cell_count-Harst2012-45_SNPs.gwas
--gene-matrix GeneAtlas2004.gct.gz
--gene-intervals NCBIgenes2013.bed.gz
--snp-intervals TGP2011.bed.gz
--null-snps Lango2010.txt.gz
--out out
--slop 10e3
--threads 4
--null-snpsets 0
--min-observations 100
--max-iterations 1e7

)
snpsea ${options[*]}

SNPsea will test SNPs associated with Red blood cell count for tissue-specific expression of linked genes across 79
human tissues in the Gene Atlas expression matrix. Each tissue will be tested up to 10 million times with matched
random SNP sets, or testing will stop for a tissue if 100 matched SNP sets achieve a higher specificity score than the
user’s SNPs.

6.1 Options

All input files may optionally be compressed with ‘gzip <http://www.gzip.org/>‘__.

6.1.1 Required

--snps ARG Text file with SNP identifiers in the first
column. Instead of a file name, you may use
'randomN' with an integer N for a random SNP list
of length N.

--gene-matrix ARG Gene matrix file in GCT format. The Name column
must contain the same gene identifiers as in
--gene-intervals.

--gene-intervals ARG BED file with gene intervals. The fourth column
must contain the same gene identifiers as in
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--gene-matrix.

--snp-intervals ARG BED file with all known SNP intervals. The fourth
column must contain the same SNP identifiers as
in --snps and --null-snps.

--null-snps ARG Text file with names of SNPs to sample when
generating null matched or random SNP sets.
These SNPs must be a subset of --snp-intervals.

--out ARG Create output files in this directory. It will be
created if it does not already exist.

6.1.2 Optional

--condition ARG Text file with a list of columns in --gene-matrix
to condition on before calculating p-values. Each
column in --gene-matrix is projected onto each
column listed in this file and its projection is
subtracted.

--slop ARG If a SNP interval overlaps no gene intervals,
extend the SNP interval this many nucleotides
further and try again.
[default: 10000]

--threads ARG Number of threads to use.
[default: 1]

--null-snpsets ARG Test this many null matched SNP sets, so you can
compare your results to a distribution of null
results.
[default: 0]

--min-observations ARG Stop testing a column in --gene-matrix after
observing this many null SNP sets with
specificity scores greater or equal to those
obtained with the SNP set in --snps. Increase
this value to obtain more accurate p-values.
[default: 25]

--max-iterations ARG Maximum number of null SNP sets tested for each
column in --gene-matrix. Increase this value to
resolve smaller p-values.
[default: 10000]

6.2 Input File Formats

6.2.1 --snps ARG

You must provide one or more comma-separated text files. SNP identifiers must be listed one per line. Lines starting
with # are skipped. If the file has no header, the first column is assumed to contain SNP identifiers. Otherwise, SNPsea
looks for a column named (case-sensitive) SNP or snp or name or marker.
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head Red_blood_cell_count-Harst2012-45_SNPs.gwas

# Harst et al. 2012
# doi:10.1038/nature11677
# PMID: 23222517
# 45 SNPs associated with red blood cell count (RBC) taken from Table 1.
# Positions are on hg19. SNPs are included if $P \le 5e-8$.
CHR POS SNP P
chr1 40069939 rs3916164 3e-10
chr1 158575729 rs857684 4e-16
chr1 199007208 rs7529925 8e-09
chr1 248039451 rs3811444 5e-10

Instead of providing a file with SNPs, you may use “randomN” like this:

--snps random20

to sample 20 random SNPs from the ‘‘–snp-intervals‘‘ file.

6.2.2 --gene-matrix ARG

You must provide a single gene matrix that must be in GCT format.

zcat GeneAtlas2004.gct.gz | cut -f1-4 | head

#1.2
17581 79
Name Description Colorectal_Adenocarcinoma Whole_Blood
1 A1BG 115.5 209.5
2 A2M 85 328.5
9 NAT1 499 1578
10 NAT2 115 114
12 SERPINA3 419.5 387.5
13 AADAC 125 252.5
14 AAMP 2023 942.5

6.2.3 --condition ARG (Optional)

You may provide column names present in the ‘‘–gene-matrix‘‘ file, one per line. The matrix will be conditioned on
these columns before the analysis is performed to help you identify secondary signals independent of these columns.
Binary (0, 1) matrices will not be conditioned.

head conditions.txt

Whole_Blood

6.2.4 --gene-intervals ARG

You must provide gene intervals in BED format with a fourth column that contains the same gene identifiers as those
present in the Name column of the ‘‘–gene-matrix‘‘ GCT file. Only the first four columns are used.

zcat NCBIgenes2013.bed.gz | head

chr1 10003485 10045555 64802 NMNAT1
chr1 100111430 100160096 54873 PALMD
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chr1 100163795 100164756 100129320 HMGB3P10
chr1 100174205 100232185 391059 FRRS1
chr1 10027438 10027515 100847055 MIR5697
chr1 100308165 100308317 100270894 RPL39P9
chr1 100315632 100389578 178 AGL
chr1 100433941 100435837 730081 LOC730081
chr1 100435344 100492534 23443 SLC35A3
chr1 100503669 100548932 64645 HIAT1

6.2.5 --snp-intervals ARG

SNP linkage intervals must be specified in BED format and include a fourth column with the SNP identifiers. The
linkage intervals assigned to the trait-associated SNPs you provide with ‘‘–snps‘‘ are taken from this file.

zcat TGP2011.bed.gz | head

chr1 0 254996 rs113759966
chr1 0 254996 rs114420996
chr1 0 254996 rs114608975
chr1 0 254996 rs115209712
chr1 0 254996 rs116400033
chr1 0 254996 rs116504101
chr1 0 254996 rs12184306
chr1 0 254996 rs12184307
chr1 0 254996 rs138808727
chr1 0 254996 rs139113303

6.2.6 --null-snps ARG

The null SNPs file must have one SNP identifier per line. Only the first column is used. The identifiers must be a
subset of the identifiers in ‘‘–snp-intervals‘‘.

zcat Lango2010.txt.gz | head

rs58108140 chr1 10583
rs180734498 chr1 13302
rs140337953 chr1 30923
rs141149254 chr1 54490
rs2462492 chr1 54676
rs10399749 chr1 55299
rs189727433 chr1 57952
rs149755937 chr1 59040
rs77573425 chr1 61989
rs116440577 chr1 63671

6.3 Output Files

The usage example shown above produces the following output files:

out/
args.txt
condition_pvalues.txt
null_pvalues.txt
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snp_condition_scores.txt
snp_genes.txt

6.3.1 args.txt

The command line arguments needed to reproduce the analysis.

cat args.txt

# SNPsea v1.0.2
--snps Red_blood_cell_count-Harst2012-45_SNPs.gwas
--gene-matrix GeneAtlas2004.gct.gz
--gene-intervals NCBIgenes2013.bed.gz
--snp-intervals TGP2011.bed.gz
--null-snps Lango2010.txt.gz
--out out
--score single
--slop 100000
--threads 8
--null-snpsets 0
--min-observations 100
--max-iterations 10000000

Repeat the analysis:

snpsea --args args.txt

6.3.2 condition_pvalues.txt

The p-values representing enrichment of condition-specificity for the given SNPs.

head condition_pvalues.txt | column -t

condition pvalue nulls_observed nulls_tested
Colorectal_Adenocarcinoma 0.933555 280 300
Whole_Blood 0.521595 156 300
BM-CD33+Myeloid 0.159772 111 700
PB-CD14+Monocytes 0.103264 154 1500
PB-BDCA4+Dentritic_cells 0.0606256 187 3100
PB-CD56+NK_cells 0.194009 135 700
PB-CD4+T_cells 0.428571 128 300
PB-CD8+T_cells 0.531561 159 300
PB-CD19+B_cells 0.226819 158 700

6.3.3 null_pvalues.txt

If the argument for ‘‘–snps‘‘ is the name of a file, the p-values for null matched SNP sets. You can compare these null
results to the results for your trait-associated SNPs.

If the argument for ‘‘–snps‘‘ is “randomN” where N is some integer, like “random20” the p-values for random un-
matched SNP sets, each with N SNPs.

The fifth column is the replicate index. The number of replicates performed is specified with ‘‘–null-snpsets INT‘‘.
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head null_pvalues.txt | column -t

ColorectalAdenocarcinoma 0.056 84 1500 0
WholeBlood 0.236667 71 300 0
BM-CD33+Myeloid 0.55 55 100 0
PB-CD14+Monocytes 0.59 59 100 0
PB-BDCA4+Dentritic_Cells 0.59 59 100 0
PB-CD56+NKCells 0.71 71 100 0
PB-CD4+Tcells 0.383333 115 300 0
PB-CD8+Tcells 0.128571 90 700 0
PB-CD19+Bcells 0.168571 118 700 0
BM-CD105+Endothelial 0.386667 116 300 0

6.3.4 snp_genes.txt

Each SNP’s linkage interval and overlapping genes. If a SNP is not found in the reference file specified with ‘‘–snp-
intervals‘‘, then the name of the SNP will be listed and the other columns will contain NA.

head snp_genes.txt | column -t

chrom start end snp n_genes genes
chr4 55364224 55408999 rs218238 0 NA
chr6 139827777 139844854 rs590856 0 NA
NA NA NA rs99999999 NA NA
chr6 109505894 109651220 rs1008084 2 8763,27244
chr10 71089843 71131638 rs10159477 1 3098
chr2 111807303 111856057 rs10207392 1 55289
chr16 88831494 88903796 rs10445033 4 353,2588,9780,81620
chr7 151396253 151417368 rs10480300 1 51422
chr12 4320955 4336783 rs10849023 2 894,57103
chr15 76129642 76397903 rs11072566 4 26263,92912,123591,145957

6.3.5 snp_condition_scores.txt

Each SNP, condition, gene with greatest specificity to that condition, and score for the SNP-condition pair, adjusted
for the number of genes overlapping the given SNP’s linkage interval.

head snp_condition_scores.txt | column -t

snp condition gene score
rs9349204 Colorectal_Adenocarcinoma 10817 0.693027
rs9349204 Whole_Blood 896 0.285864
rs9349204 BM-CD33+Myeloid 896 0.236487
rs9349204 PB-CD14+Monocytes 29964 0.340561
rs9349204 PB-BDCA4+Dentritic_cells 29964 0.411727
rs9349204 PB-CD56+NK_cells 896 0.0356897
rs9349204 PB-CD4+T_cells 896 0.38182
rs9349204 PB-CD8+T_cells 896 0.332008
rs9349204 PB-CD19+B_cells 29964 0.255196
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Output Visualizations

7.1 View enrichment of tissue-specific gene expression

A horizontal bar plot of negative log10 p-values for a test of 45 red blood cell count-associated SNPs for enrichment
of tissue-specific expression in profiles of 79 human tissues and cells.
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python bin/snpsea-barplot out

7.2 View the most specifically expressed gene for each SNP-tissue
pair

A heatmap exposing the contributions of specifically expressed genes within each SNP linkage interval to the speci-
ficity scores of each tissue.

python bin/snpsea-heatmap out

7.3 View the type 1 error rate estimates for each tissue

A scatter plot of the observed proportion of p-values under various thresholds after repeating the analysis with 10,000
random SNP sets.

Rscript bin/snpsea-type1error out
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CHAPTER 8

Supplementary Figures

8.1 Supplementary Figure 1: Determining SNP linkage intervals

We calculated 𝑟2 values for all pairs of SNPs within a 1 Mb sliding window along each chromosome. Next, we
assigned each of the SNPs from The 1000 Genomes Project Phase I (1000 Genomes Consortium 2012) to a linkage
interval by identifying each SNP’s furthest upstream and downstream neighbors with 𝑟2 ≥ 0.5. Finally, we extended
each interval to recombination hotspots reported by HapMap (Myers et al. 2005) with recombination rate >3 cM/Mb.
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8.2 Supplementary Figure 2: Counting genes in GWAS SNP linkage
intervals

A cumulative density plot of the number of genes overlapped by the linkage intervals of GWAS SNPs. We downloaded
the GWAS Catalog SNPs on January 17, 2014 and selected the 11,561 SNPs present in the 1000 Genomes Project
(1000 Genomes Consortium 2012). Of these SNPs, 2,119 (18%) of them have linkage disequilibrium (LD) intervals
that overlap no genes, and 3,756 (32%) overlap a single gene. The remaining 50% of SNPs overlap 2 or more genes.
This illustrates the critical issue that many SNPs implicate more than one gene.

8.3 Supplementary Figure 3: Choosing the 𝑟2 threshold for linkage
intervals

We chose to use 𝑟2 ≥ 0.5 due to previous experience (Rossin et al. 2011). To investigate if this choice influences
SNPsea results, we repeated the analysis of 45 red blood cell count-associated SNPs (Van der Harst et al. 2012) using
5 different thresholds (𝑟2 ≥ 0.2, 0.4, 0.6, 0.8, 1.0). We also did this for SNPs associated with multiple sclerosis, celiac
disease, and HDL cholesterol.
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8.3. Supplementary Figure 3: Choosing the 𝑟2𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑓𝑜𝑟𝑙𝑖𝑛𝑘𝑎𝑔𝑒𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 33
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Gene Atlas and Gene Ontology (left and right). Each subplot has −log10𝑃 for 𝑟2 = 1 on the x-axis and −log10𝑃 on
the y-axis for the 𝑟2 threshold marked above. Grey lines are significance thresholds after correction testing multiple
conditions (cell types, GO annotations). Black points are significant and grey are not. We used the ’--score
single’ option. Red blood cell count SNPs are enriched for hemopoiesis (GO:0030097) (𝑃 = 2 × 10−5) for
linkage intervals with 𝑟2 = (0.6, 0.8, 1.0). This result falls below the multiple testing threshold at 𝑟2 ≥ 0.4, but
remains significant at 𝑟2 ≥ 0.5 (see main text).

8.4 Supplementary Figure 4: Each trait-associated locus harbors a
single associated gene

Quantile-quantile plots for Gene Atlas (Su et al. 2004) and Gene Ontology (top and bottom). The x and y axes are
−log10𝑃 for ’--score single’ and ’--score total’ SNPsea options, respectively. The ’single’
and ’total’ methods are described . The 𝑃 -values appear similar between methods.

8.5 Supplementary Figure 5: Type 1 error estimates

We sampled 10,000 sets of 100 SNPs uniformly from a list of LD-pruned SNPs (Lango Allen et al. 2010). We tested
each of the 10,000 sets for enrichment of tissue-specific expression in the Gene Atlas (Su et al. 2004) gene expression
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matrix (top) and for enrichment of annotation with Gene Ontology terms (bottom). For each condition, we show the
proportion of the 10,000 enrichment p-values that are below the given thresholds. We observe that the p-values are
near the expected values, so the type 1 (false positive) error rate is well-calibrated.

8.5.1 Additional Examples

We tested SNPsea with the three additional phenotypes listed below with genome-wide significant SNPs (𝑃 ≤ 5 ×
10−8). When multiple SNPs implicated the same genes, we merged them into a single locus. We tested each phenotype
with the Gene Atlas and GO matrices with the ’--score single’ option. The adjacent heatmaps show Pearson
correlation coefficients for all pairs of conditions.

Phenotype SNPs Loci Reference
Multiple sclerosis 51 47 Supp. Table A (IMSGC WTCCC 2011)
Celiac disease 35 34 Table 2 (Trynka, et al. 2011)
HDL cholesterol 46 46 Supp. Table 2 (Teslovich, et al. 2010)

8.6 Supplementary Figure 6: Red blood cell count GO enrichment

We observed significant enrichment for hemopoiesis (2 × 10−5). The top 25 terms are shown.

8.7 Supplementary Figure 7: Multiple sclerosis

We observed significant enrichment for 6 cell types. The top 25 of 79 are shown.

We observed significant enrichment for 52 Gene Ontology terms. The top 60 terms are shown.
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8.7. Supplementary Figure 7: Multiple sclerosis 37
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8.8 Supplementary Figure 8: Celiac disease

We observed significant enrichment for 3 cell types. The top 25 of 79 are shown.

We observed significant enrichment for 28 Gene Ontology terms. The top 40 terms are shown.

8.9 Supplementary Figure 9: HDL cholesterol

We observed significant enrichment for liver tissue-specific gene expression. The top 25 of 79 are shown.

We observed significant enrichment for 13 Gene Ontology terms. The top 25 terms are shown.
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8.9. Supplementary Figure 9: HDL cholesterol 39
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